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The immune system exists in perpetual co-evolution with pathogens, and
microbial pathogenesis is inexorably linked to the cyclical interactions

e i between the pathogen and the host. Because pathogens exploit the immune
Ca“.fomla’ 1196 High Street, UG Santa Cruz, system in unique ways, the antimicrobial efficacy of any given immune pro-
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USA cess varies between pathogens, and the consequences of activation or inhibi-
Tel: 831-459-4095 tion of antimicrobial programs must be interpreted in the context of the given
E-mail: jkimmey@ucsc.edu pathogen. An increasing body of literature shows that numerous facets of the
immune system are tightly regulated by the circadian clock, with multiple
immune processes demonstrating increased activity during certain times of the
day. However, the field of circadian immunology has generally given its atten-
tion to unraveling the mechanism of circadian regulation and comparatively
little attention to how these circadian oscillations may influence the ultimate
outcome of diseases. Therefore, this review aims to interpret these findings in
the context of a select number of clinically relevant pathogens: Salmonella
enterica, Listeria monocytogenes, and Streptococcus pneumoniae. In this
way, we hope to discuss the complex factors that determine how the circadian
clock regulates disease progression.
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In mammals, a large set of genes oscillate in expression
in a nearly 24-h cycle. These rhythmic expressions are
known as circadian rhythms (from the Latin circa
diem, ‘around a day’) and are utilized by the organism
to adapt to changing environmental conditions
throughout the day, such as temperature and ambient
light. To synchronize these oscillations to environmen-
tal conditions, mammals receive temporal information

from a variety of sources. Chief among these is light
exposure, which is sensed in the retina, and the
light information is then provided to the suprachias-
matic nucleus in the brain via the optic nerves [1]. The
suprachiasmatic nucleus subsequently relays this tem-
poral information to other cells in the body by regulat-
ing body temperature and hormone production [1].
The result of these processes is daily oscillations in a
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Circadian timing rewrites infection outcomes

variety of cellular pathways, including many immune
pathways. In appreciation of this observation, a grow-
ing body of literature reports that many immune func-
tions are circadian, with immune pathways such as
cytokine production and immune cell migration being
reported to have differential expression throughout the
course of a day [2,3]. We posit that this
time-dependent difference produces a phenomenon in
which all infections experience times of day at which
the risk of severe disease outcome is worse. Although
only a few pathogens have been examined thus far,
these studies show clear evidence that susceptibility to
pathogenic diseases is partially dependent on the time
of the host’s circadian rhythms. This is corroborated
by clinical data, which show that disruption in the cir-
cadian clock (e.g., in a night shift worker) is a predic-
tor of more severe disease outcomes [4,5]. Given the
diverse strategies by which pathogens cause disease,
our goal in this review was to place existing circadian
studies into the broader framework of pathogenesis.

Circadian  rhythms are maintained by a
self-perpetuating transcriptional-translational feedback
loop known as the circadian clock. In mammals, this
loop consists of the circadian transcription factors
CLOCK and BMALI, which together bind to E-box
regions in gene promoters to induce the transcription of
a plethora of genes [6]. Among these are circadian
repressors: the PERIOD proteins (PER1, PER2, and
PER3) and CRYPTOCHROME proteins (CRY1
and CRY2), which upon expression dimerize and trans-
locate into the nucleus, ultimately binding to CLOCK:
BMALI complexes [6]. In this heterotetrameric com-
plex, CLOCK and BMALI are unable to efficiently bind
to E-box sites, preventing further activation of these
genes [6]. Without further production of PER and CRY,
the concentration of these repressors decrease, eventu-
ally releasing CLOCK and BMALI from repression and
allowing the feedback loop to enter a new cycle [6]. This
cycle requires roughly 24 h to complete and occurs in
cells from numerous organs throughout the host [7,8].

A second feedback loop interlinks with the circadian
clock, allowing for the fine-tuning of the output and
oscillation of the circadian clock. In this feedback loop,
CLOCK:BMALI enhances the expression of the tran-
scriptional repressor REV-ERBa [9]. REV-ERBa com-
petes with the transcription factors RORa and RORYy
for promoter binding at ROR/REV-ERB response ele-
ments; without ROR binding, the expression of an addi-
tional set of genes is downregulated [10,11]. Among the
genes repressed by REV-ERBa binding are Clock and
Bmall [9-11]. This series of events therefore produces a
feedback loop which causes Clock and Bmall transcrip-
tional expression to oscillate [9,10].
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The circadian regulation of immune processes and
their impact on infection has been thoroughly reviewed
elsewhere [2,3,12-14]. Given that there are relatively
few circadian studies available for any given pathogen,
most reviews necessarily generalize across organisms to
provide a broad and holistic overview of the field.
However, it is well known that there is substantial var-
iation in the virulence strategies employed by each
pathogen and the immune responses necessary to
defend against each infection. The host response to a
pathogenic invasion is dependent on the site of infec-
tion and host cell type; a pathogen therefore faces
vastly distinct immunological landscapes in different
organs [15,16]. The nature of the immune response
also distinctly differs between bacterial pathogens
[17,18]. Thus, while many studies use lipopolysaccha-
ride (LPS) to mimic bacterial-triggered inflammation,
it is important to acknowledge that LPS is only made
by Gram-negative bacteria, and these findings might
not be relevant to the pathogenesis of Gram-positive
bacteria, which lack LPS. Additionally, through exten-
sive co-evolution between the bacterial pathogen and
the host, successful pathogens have developed distinct
adaptations to evade, resist, or subvert the immune
responses of their host. It is therefore not surprising
that immune responses that are most beneficial for the
clearance of one pathogen are rarely similar to
the responses most beneficial for the clearance of other
pathogens. In many cases, an immune response that is
protective against one pathogen is ineffective or even
detrimental to the clearance of another pathogen.

The wide variation in pathogenesis, combined with
the small number of circadian studies on bacterial
infections, is difficult to capture in a single review.
Here, we instead focus on the pathogenesis of three
clinically relevant bacterial pathogens—Salmonella
enterica, Listeria monocytogenes, and Streptococcus
pneumoniae—and examine what is known about circa-
dian regulation of host physiology and immune pro-
cesses that are most relevant to each infection. For
reference, we have generated a simplified figure that
denotes the time of best host outcome for all patho-
genesis studies discussed here (Fig. 1). A cursory
review of the presented information suggests disagree-
ments in the published literature regarding optimal
times of infection; however, the figure leaves out many
important variables necessary for interpretation—such
as what phenotype was measured (bacterial burden? In
which tissue? At what time point?) and what infection
times were tested (did the authors only infect animals
during the day?). For this reason, we have produced
additional figures (Figs 3-5) that include these relevant
variables, which will be discussed in greater detail in
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Fig. 1. Summary of optimal time-of-day control of bacterial infections. To ease comparisons, the times listed here denote the ‘best’
outcome for the host from each study reviewed here that analyzed direct measures of bacterial pathogenesis (increased survival or
decreased bacterial burden). Icons to the left depict the route of infection and target organ for bacterial inoculation to signify differences
between experimental approaches: gavage needle + intestines (oral infection delivered by oral gavage), bread + intestines (oral infection
delivered by contaminated food), needle + blood drop (intravenous), pipette + lung (respiratory infection delivered by intranasal inoculation).
Streptococcus pneumoniae (Spn) is in purple, Listeria monocytogenes (Lm) is in green, and Salmonella enterica Typhimurium (Salmonella) is
in pink. Note that this summary does not take into account what specific outcome was measured (survival or bacterial burden at different
timepoints) or what infection times were analyzed (some compared two daytime exposures). Expanded summaries of this data based on
each pathogen are provided in Figs 3-5. Created in BioRender. Kimmey, J. (2025).

the following sections. We will attempt to contextual-
ize immune processes in a pathogen-specific manner
and provide potential explanations for how the circa-
dian clock contributes to differential disease outcomes.

How to tell time

Researchers use multiple timekeeping systems to quan-
tify circadian phase, each with distinct advantages and
interpretation challenges. In this review, we report
times in as many formats as possible in an attempt to
improve accessibility while maintaining scientific
precision.

Social time (e.g., 14:00 or 2:00 PM) is rarely used in
circadian biology because it does not properly account
for experimental light schedules, which may vary from
the external light cycle depending on experimental
design. Instead, times are often given as zeitgeber time
(ZT), defined as the number of hours after a synchro-
nizing environmental cue. In animal studies, ZTO
almost always refers to lights on (analogous to dawn),
while ZTI12 is 12 h later, typically coinciding with
lights off (analogous to dusk). However, for animals
maintained on a 14:10 light schedule (14 h light, 10 h
dark), which mimics summer lighting patterns, lights
off or ‘dusk’ occurs at ZT14.

In vitro, where mammalian cells do not directly
respond to light, ZTO typically marks a synchronizing
event such as a medium change or addition of a chem-
ical cue. Because these cues do not directly align with
solar time, translating this to an in vivo ‘time’ is not
straightforward. Further, many in vitro studies are per-
formed in the absence of timekeeping cues to prevent
confounding effects from such stimuli. In such cases,
the intrinsic circadian period often deviates from 24 h;
thus, a time provided in hours will not consistently
correspond to any given circadian phase. To standard-
ize comparisons in these cases, time can be expressed
in circadian time (CT), which normalizes the cycle to
24 equal circadian hours, defined as 1/24 of the mea-
sured period length for a given sample.

While this nomenclature is critical for experimental
precision and reproducibility, it can be a barrier, par-
ticularly for nonspecialists. Furthermore, many studies
use nocturnal mice, whose active phase occurs at
night, which is opposite to the human active phase.
Consequently, many processes are inverted between
mice and humans, and it is common to contextualize
reported times as active phase (wake) or rest phase
(sleep). However, not all rhythms are inverted between
diurnal and nocturnal species [19] and oversimplifica-
tion can cause unintended bias. For example, one
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Fig. 2. Reference of different time-keeping mechanisms used in circadian literature. Zeitgeber time (ZT) is counted in hours after a ‘time-
giving’ cue, or zeitgeber. Here, we provide ZT with a reference based on lights on (ZT0, depicted by a yellow light bulb), which is the most
common zeitgeber used in animal studies. Lights off is depicted by a gray light bulb. Phrases used to denote solar time (dawn, morning,
etc.) are provided above the ZT axis based on a 14 h day/10 h night (i.e., summer day) or below the ZT axis based on a 12 h day/12 h night
(i.e., fall/spring day—most common in animal facilities). Due to space, mid-day and midnight have been shortened to ‘mid’. Note that ‘dusk’
and the ‘'mid’ day or night will correlate with different ZT, depending on the lighting cycle used for animal experiments. At the bottom,
references based on activity patterns of diurnal and nocturnal animals are provided which roughly divide the activity and rest periods into
‘early’, ‘'mid’, and ‘late’. A gap is left between named time periods to denote that these terms are not universally agreed upon nor
consistent in the literature (i.e., between early and mid active). Created in BioRender. Kimmey, J. (2025).

might compare a phenotype that peaks ‘at the start of
the rest phase’ to one that peaks ‘at the end of the
active phase’ without realizing that both occur at ZT0
in mice.

For ease of interpretation by noncircadian readers,
we have attempted to translate ZT or CT into familiar
solar references whenever possible (dawn, morning,
mid-day, afternoon, dusk, evening, midnight), followed
by active/rest phase annotation appropriate for the
species used in the study. In this review, mid-day and
midnight refer to halfway between lights on and lights
off (ZT6 and ZT18 if on a 12:12 light cycle), not nec-
essarily 12:00 AM/PM local time (Fig. 2).

Salmonella enterica

Salmonella enterica is a Gram-negative gastrointestinal
pathogen that primarily infects intestinal epithelial
cells and macrophages following consumption of con-
taminated food or water. Although thousands of sero-
vars exist [20], pathogenic Salmonella are broadly
classified as either typhoidal or nontyphoidal, based
on their capacity for systemic dissemination and dis-
ease presentation. Typhoidal serovars, such as S.
Typhi and S. Paratyphi, are human-restricted and
cause typhoid fever, whereas nontyphoidal serovars
(e.g., S. Typhimurium) cause self-limiting gastroenteri-
tis in immunocompetent hosts but can become invasive
in immunocompromised individuals [21]. In both cases,
infection induces an inflammatory response that is crit-
ical for pathogen clearance. Typhoidal strains have
evolved mechanisms to suppress early gut inflamma-
tion, thereby facilitating immune evasion. This

decrease in initial inflammation enables the pathogen
to breach the intestinal barrier and disseminate system-
ically to cause typhoid fever [21].

The Salmonella enterica serovar Typhimurium is
nontyphoidal in humans, with infections typically
self-limiting within 1 week postexposure and exhibiting
low mortality [22]. However, mice exposed to this sero-
var are unable to successfully clear the infection, lead-
ing to the development of systemic infection exhibiting
symptoms reminiscent of typhoid fever [23,24]. As
most research into Salmonella utilizes the Typhimur-
ium serovar, we will use the term Salmonella to refer
to S. Typhimurium for the remainder of this section.

The pathogenesis of Salmonella depends heavily on
type III secretion systems (T3SS), a needle-like appara-
tus that attaches to the host cell membrane and injects
bacterial effector proteins directly into the host cyto-
plasm. This system allows Salmonella to manipulate
host cell signaling, cytoskeletal dynamics, and immune
responses. Salmonella contains two known T3SSs,
encoded on the Salmonella pathogenicity islands SPI-1
and SPI-2 [25]. The SPI-1-encoded T3SS facilitates
invasion of intestinal epithelial cells by inducing cyto-
skeletal rearrangements to promote bacterial uptake
[25]. Once internalized, Salmonella switches to the SPI-
2-encoded T3SS to remodel the nascent vacuole into a
replication-permissive compartment known as the
Salmonella-containing vacuole (SCV) [25,26].

Within this niche, the bacteria hijack host trafficking
pathways and access nutrients to support intracellular
replication. Salmonella also replicate within macro-
phages by inducing phagocytosis, then modifying the
resulting phagosome into an SCV via SPI-2-encoded
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effectors [26]. Regulation of secretion systems and pro-
duction of virulence factors are central to bacterial
success and critical for pathogenesis. As invasion
involves extensive hijacking of host cellular processes,
it remains unclear how or whether the SCV manipu-
lates the circadian clock and circadian regulation of
cellular processes. Hence, the relevance of intrinsic cir-
cadian regulation becomes uncertain once Salmonella
have successfully established its replicative niche within
host cells and will not be discussed further here.

Colonization resistance

The first barrier against Salmonella is the acidic envi-
ronment of the stomach, which significantly limits the
number of bacteria reaching the intestine [27-30].
The bacteria that survive encounter the intestinal
microbiota, which provides a secondary layer of
defense through competitive exclusion and metabolic
interference. The presence of the microbiome provides
hosts with ‘colonization resistance’ by occupying eco-
logical niches in the intestinal lumen, which excludes
Salmonella from efficiently colonizing the intestines.
Supporting this idea, germ-free mice, which lack a
microbiome, or mice treated with antibiotics to ablate
the intestinal microbiome exhibit increased susceptibil-
ity to Salmonella infection [31,32].

In addition to providing colonization resistance, the
gut microbiome interacts extensively with the host
immune system to modulate and maintain immune
readiness. For instance, attachment of commensal bac-
teria to the intestinal epithelium can stimulate produc-
tion of antimicrobial peptides, which provide
nonspecific defenses against many bacteria [33]. Com-
mensals also contribute to barrier immunity by pro-
moting the development of gut-associated lymphoid
tissues [34-36] and producing short-chain fatty acids
that can affect the circadian oscillation of peripheral
clocks [37]. Importantly, these various functions are
associated with specific microbial taxa, making the
composition of the microbiome, rather than its mere
presence, critical for effective colonization resistance.
Many factors influence the composition of the gut
microbiome, including host genetics, age, and diet
[38,39]. Highlighting the importance of gut micro-
biome composition on infection resistance, laboratory
mice sourced from different vendors are known to
have different abilities to resist Salmonella infection, a
trait that was traced to differences in the gut micro-
biome composition across vendors [40].

Increasing studies have now established that the
diversity and composition of gut microbial populations
exhibit diel oscillations and are influenced by host

Circadian timing rewrites infection outcomes

circadian rhythms [41-48], suggesting that the coloni-
zation resistance provided by these commensal
microbes may similarly change throughout the day. A
study by Brooks er al. showed that the adherence of
segmented filamentous bacteria (SFB) to intestinal epi-
thelial cells experienced daily oscillations and contrib-
uted to the rhythmic expression of the antimicrobial
peptide REG3y [49] (Fig. 3). In C57BL/6 mice sourced
from Taconic Biosciences, a facility known to have
mice colonized with SFB, the intestinal REG3y abun-
dance in these mice increased throughout the day
(peaking at the start of the active phase in mice) and
declined throughout the night. This rhythmicity could
be reversed by daytime restricted feeding and was lost
in mice expressing a dominant negative Clock allele,
suggesting that clock-controlled feeding rhythms drive
SFB attachment. No significant expression of REG3y
was observed in mice lacking SFB due to being raised
germ-free mice (lacking microbiome), or being sourced
from Jackson Labs (not colonized with SFB), or in
mice lacking MyDS88 (defective in microbial detection).
Thus, expression and rhythmicity of this antibacterial
defense mechanism are intricately controlled by com-
plex dynamics between the clock, feeding, and the
microbiome.

Salmonella is resistant to certain antimicrobial pep-
tides such as LCN2 and REG3y; thus, the induction
of such antimicrobial peptides preferentially kills the
microbiome and therefore facilitates Salmonella coloni-
zation [50,51]. Counterintuitively, then, the expression
of REG3y promotes rather than prevents Salmonella
infection. In agreement with this observation, Salmo-
nella infection of mice colonized with SFB had higher
Salmonella bacterial titers and more rapidly suc-
cumbed to infection when exposed at dusk (ZT12, end
of rest phase) compared to dawn (ZTO0, end of active
phase) [49]. As expected, no time-of-day difference in
bacterial titers was observed during Salmonella infec-
tion of mice lacking SFB, either due to vendor source
or pretreatment with antibiotics. Given that numerous
members of the intestinal microbiome are known to
modulate the host environment, it is probable that
other bacterial species may influence the circadian host
susceptibility to Salmonella or to other gastrointestinal
pathogens, but further research is required to fully
understand these effects.

Sensing and cytokine production

During invasion, detection of Salmonella virulence fac-
tors, such as components of the T3SS, cell wall, or fla-
gellin, leads to the assembly of various inflammasomes
including NLRP3, NAIP/NLRC4, and NLRP6 in
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macrophages and/or epithelial cells [5

somes are large, multiprotein complexes that initiate
pro-inflammatory cascades by activating intracellular
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Fig. 3. Summary of host outcomes following time-of-day studies with Salmonella. (A) Summary of studies reviewed here. For reference,
timelines denoting activity, solar time and ZT (relative to lights on at ZTO0) are provided at the top. Each study is denoted by a pink header
with title followed by the citation number used in this review in brackets [#]. Icons are placed based on the ZT at which the infection
occurred (not necessarily the time at which the parameter was measured). Symbols indicate increased (1), highly increased (11), or
decreased (V) levels of a parameter measured in the study that is thought to drive differences in bacterial outcome. Ultimate outcomes of
pathogenesis are summarized as better for the host (¢#, green fill) or worse for the host (X, red fill). n.s. in gray means there was no
significant differences in that parameter based on the time of infection. Note that studies often vary in the timepoints tested. In study [51],
improved host outcome occurred at dawn and is associated with decreased segmented filamentous bacteria (SFB) attachment and REG3y
levels. Based on REG3y levels, one would expect an improved outcome at ZT18 (and worse at ZT6), but these times were not tested. (B,
C) Summary of the two oral infection models used to investigate Salmonella infection. The study in (B) [51] found oscillations in REG3y
which are thought to increase susceptibility to Salmonella during the night by reducing colonization resistance. The study in (C) [61] found
increased daytime inflammation during Salmonella infection that worsens outcome by limiting competition from the microbiome. While
similar mechanisms of pathogenesis are uncovered in both studies, differences in diel-susceptibility were identified, which may be due to

differences in timepoints measured or the use of antibiotics prior to infection. Created in BioRender. Kimmey, J. (2025).

activation of inflammasomes also induces pyroptosis, a
form of pro-inflammatory programmed cell death,
which prevents Salmonella from accessing its intracel-
lular replicative niche [55-58]. Salmonella additionally
activates Toll-like receptors (TLRs), which are impor-
tant microbe-detecting proteins, and in this way induce
the production of additional pro-inflammatory cyto-
kines such as TNF-o, CXCLI, and CXCL2 [59-62].
The collective production of these pro-inflammatory
cytokines is critical to induce neutrophil migration into
the infected tissues, an essential step toward resolution
of the infection.

The circadian clock is known to regulate inflamma-
some activation, as the circadian-associated transcrip-
tion factor REV-ERBa is known to suppress the
expression of the prototypical inflammasome NLRP3.
The circadian control of the NLRP3 inflammasome in
different disease contexts is discussed in more detail
in another review [13]; briefly, REV-ERBa prevents
Nirp3 transcription, leading to the oscillatory expres-
sion of Nlrp3 transcript and protein abundance [63].
Accordingly, NLRP3-mediated cytokine production is
similarly circadian-controlled, with the greatest
amount of IL-1p produced when peritoneal macro-
phages are stimulated at dusk (ZT12, end of rest
phase) [63]. Additionally, circadian disruption has been
found to increase the abundance of mature caspase-1
in the brain, though no difference was observed in the
abundances of the inflammasome proteins NLRPI,
NLRP3, and NLRC4 nor of the inflammasome adap-
tor proteins ASC and AIM2 [64]. Because abundances
of inflammasome-associated proteins appear
unchanged, the authors conclude that the increased
caspase maturation is due to a circadian regulation of
inflammasome assembly rather than a circadian-driven
regulation of transcription or translation, suggesting
that the circadian clock is able to regulate multiple
steps of inflammasome activation. Caspase-1 is the

downstream effector of both the NLRP3 and
NAIP/NLRC4 inflammasomes [55,56]; thus, it is possi-
ble that the observed maturation of caspase-1 is driven
in part by a circadian-regulated activation of both
NLRP3 and NAIP/NLRC4 inflammasomes.

The production of pro-inflammatory cytokines and
chemokines relevant to Salmonella infection is also
under circadian control. For instance, it has been shown
that leukocytes from human blood samples respond to
stimulation with the Gram-negative bacterial compo-
nent, LPS, by producing pro-inflammatory cytokines
such as TNF-a and IL-8 (human homolog of murine
CXCLI and 2) in a diel manner, with greater amounts
being produced with blood extracted at around
9-10 AM, during the human early-mid active phase
[65]. A separate study with blood extracted from human
volunteers found that stimulation with LPS extracted
from the Salmonella serovar Abortusequi induced
IFN-y and IL-8 in a diel manner, with greater amounts
being produced from blood extracted at around dusk to
dawn (human rest phase) [66]. Notably, stimulation
with the Gram-positive bacterial component, LTA
(which is not made by Salmonella), did not induce a
similar diel effect, highlighting the differences between
the immune responses to different bacterial pathogens
[66]. It remains as yet unclear the precise mechanism by
which the production of these cytokines exhibits circa-
dian oscillations, but it is possible that oscillation of
microbial detection capabilities (i.e., Toll-like receptors)
may be at least partially responsible for this diel pheno-
type. Taken together with the known circadian control
of the inflammasome, the ability to detect Salmonella
colonization and the subsequent signaling for a pro-
inflammatory immune response is therefore likely to be
circadian, with greater sensitivity of detection occurring
during the host active phase.

One of the earliest investigations into the time-of-day
susceptibility of Salmonella was published in 1983, in
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which rats injected with Salmonella at night (active
phase for Sprague—Dawley rats) showed greater survival
compared to rats injected in the day [67] (Fig. 3). While
the mechanism for this effect was not determined, the
authors hypothesized this may be due to increases in cir-
culatory pyrogens at night, which could allow for
increased immune responses and therefore clearance of
Salmonella. A separate study in mice found that mice
exposed intragastrically to S. Typhimurium had greater
bacterial clearance and lower inflammation of the intes-
tinal lining when exposed at night (ZT16, mid-active
phase) compared to mice exposed in the morning (ZT4,
mid-rest phase) [59] (Fig. 3). This report identified dif-
ferences in the production of pro-inflammatory cyto-
kines as a driving factor for this difference in outcomes.
Night-infected mice were associated with higher abun-
dance of Tnfa transcript at 60 h postinfection. How-
ever, at 72 h postinfection, this phenotype was reversed,
with day-infected mice now displaying higher transcript
levels of Tnfo and Cxc/l. This is consistent with the idea
that an early, robust immune response is important for
effective Salmonella clearance, as failure to clear invad-
ing pathogens rapidly will prompt a greater immune
response later as the pathogen replicates and worsens
the infection.

The report additionally found that the expression of
certain antimicrobial peptides—LCN2 and REG3y—
following Salmonella infection differed depending on
the time of infection. The expression of these antimi-
crobial peptides was greater upon Salmonella exposure
in the daytime, correlating with the window of suscep-
tibility to Salmonella infection. Similar to the study by
Brooks et al., the expression of LCN2 and REG3y
preferentially disrupted the intestinal microbiome and
provided an open niche for the invading Salmonella,
leading to increased susceptibility of mice during the
day. Agreeing with this observation, wild-type Salmo-
nella experienced a competitive advantage over a
Salmonella mutant susceptible to LCN2, but this
advantage was present only when mice were exposed
in the day (which correlates with infection-induced
timing of LCN2 expression). In total, this study
reveals that immune signaling and colonization resis-
tance together are important drivers of the circadian
susceptibility to Salmonella.

Nutritional immunity

As mentioned previously, Salmonella can engage with
and activate host cell inflammasomes such as NLRP3,
NAIP/NLRC4, and NLRP6. While activation of the
NLRP6 inflammasome by Salmonella can activate key
pro-inflammatory cytokines and induce pyroptosis, it

D. Mo et al.

also activates a noncanonical pathway, which induces
an iron sequestration response in host cells [53]. All
organisms, including pathogens, require access to
essential metals such as iron to carry out basic biologi-
cal processes. During infection, host cells capture and
sequester essential metals to prevent and hamper the
spread of the pathogen in a strategy known as nutri-
tional immunity [68]. Paradoxically, this response is
detrimental during Salmonella infection, as accumula-
tion of iron in macrophages and epithelial cells pro-
vides a direct source of iron to intracellular Salmonella
[53]. Hence, despite losing a pathway for producing
beneficial cytokine and pyroptotic responses, mice
lacking NLRP6 have improved bacterial clearance of
Salmonella compared to wild-type controls [53].

Similar to NLRP3, NLRP6 was observed to be sup-
pressed by REV-ERBa [69]. Intriguingly, this report
finds that Nlrp6 mRNA expression is lowest at dusk
(ZT12, end of rest phase) and highest at dawn (ZTO,
end of active phase), suggesting a difference in tran-
scriptional kinetics between Nlrp6 and Nirp3 despite
both being in part regulated by REV-ERBa. As
NLRP6-mediated iron aggregation is deleterious for
Salmonella infection, lower amounts of REV-ERBa
activity are expected to improve Salmonella clearance.
Indeed, applying a pharmacological inhibitor of REV-
ERBa was found to improve bacterial clearance to a
similar degree as deletion of Nlrp6, and pharmacologi-
cal inhibition similarly improved inflammation-
mediated injuries of colonic tissues during Salmonella
infection. Taken together, REV-ERBa-mediated regu-
lation of Nlrp6 suggests that the greatest degree of
nutritional immunity-related Salmonella resistance
occurs at the peak of REV-ERBa oscillations, which
in mice occurs at dusk (ZT12, end of rest phase).

Nutritional immunity may therefore provide an alter-
native interpretation for the results found in the early
investigations into Salmonella susceptibility discussed
above. The report documented that serum availability
of iron and zinc, two biologically essential metals, was
higher during the day (when the rats were more suscepti-
ble) as compared to the night (when the rats were less
susceptible) [67]. Therefore, in addition to the hypothe-
sis that changes in circulatory pyrogens drive a time-of-
day difference in Salmonella susceptibility, Salmonella
bacterial burden may be greater when infected in the
day due to better accessibility of essential metals and
therefore greater bacterial replication.

Neutrophil recruitment and function

In response to the pro-inflammatory signals produced
by macrophages and epithelial cells, neutrophils
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translocate to the infection site. At the infection site,
neutrophils clear Salmonella through degranulation
and generation of reactive oxygen species (ROS), thus
making neutrophils valuable for the resolution of
infection [70,71]. The circadian control of immune cell
recruitment to target organs is well-established in non-
infected hosts, with many individual aspects of recruit-
ment known to be regulated by the circadian clock.
For instance, multiple adhesion molecules on endothe-
lial and infiltrating myeloid cells oscillate over circa-
dian time, leading to time-of-day differences in the
ability of circulating myeloid cells to adhere to
the endothelial lining and extravasate into infection
sites [72]. Notably, cells in different tissues exhibit dif-
ferent circadian regulation of these adhesion mole-
cules; thus, the ideal time of myeloid cell recruitment
is organ-specific [72].

Additionally, the process of neutrophil migration
has itself been found to be circadian, with murine neu-
trophils extracted at ZT13 (early active phase) exhibit-
ing greater migratory ability than neutrophils
extracted at ZTS5 (mid-rest phase) [73]. The report
attributed this difference in migratory efficacy to dif-
ferences in the speed of neutrophil rolling and strength
of neutrophil adhesion to endothelial cells. In turn,
this difference is associated with a circadian clock-
dependent pattern of neutrophil aging, in which mouse
neutrophils are maintained during the night (active
phase) and aged during the day (rest phase). A
neutrophil-specific deletion of the core circadian clock
gene Bmall revealed a loss in this circadian aging phe-
notype and subsequently an increase in neutrophil roll-
ing, adhesion, and extravasation. The same study
found a similar phenotype in human neutrophils, with
a higher proportion of aged neutrophils in the circula-
tion at 4:00 PM (mid-late active phase) and a lower
proportion at 4:00 AM (mid-late rest phase), suggest-
ing that the circadian-dependent neutrophil aging phe-
notype may be more generally conserved across
various species. However, human and mouse neutro-
phils exhibit aging at different circadian times (rest
phase in mice, active phase in humans), suggesting that
additional or altogether different pathways regulate
the circadian neutrophil aging phenotype in humans.
The degree to which this difference affects human sus-
ceptibility to Salmonella is unclear and warrants fur-
ther investigation.

At the infection site, neutrophils help to clear invad-
ing bacteria by enacting a variety of antimicrobial pro-
cesses such as NETosis and degranulation. A study
investigating the circadian control of neutrophils found
clear oscillations in a variety of such processes in neu-
trophils from both mice and humans [74]. In a sterile
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inflammation model of tissue injury through ischemia,
neutrophil extracellular trap (NET) formation in the
cremaster muscle of mice was increased during
the night (ZT13, early active phase) compared to the
day (ZT5, mid rest phase) [74]. The authors ascribe
this observation to a neutrophil deprogramming that
occurs over the course of a day, which causes neutro-
phils to be less capable of undergoing NETosis. To
measure circadian degranulation potential, the authors
assessed the granule content of neutrophils extracted
from mice at different times of the day and found that
the time of peak granule content in neutrophils was
the middle of the night (ZT17, mid active phase), with
the trough occurring near dawn (ZTO, end of active
phase). Additionally, the authors associate this peak
with the release of neutrophils from the bone marrow
and hypothesize that, over time in circulation, neutro-
phils lose their granules. All these data suggest that
the most potent neutrophil responses would be during
the early-mid active phase (at night in mice). A similar
circadian phenomenon was observed in human neutro-
phils (though the times are flipped as humans are diur-
nal). Human neutrophils exhibited peak granule
content and NET-forming capacity early in the morn-
ing (8:00 AM, early active phase) and decreased by the
afternoon (2:00 PM).

Additionally, some evidence exists that suggests that
neutrophil ROS production is circadian. While circa-
dian ROS production has not yet been observed in
murine neutrophils, it has been documented in zebra-
fish models of Salmonella infection. In zebrafish, injec-
tion of Salmonella into the hindbrain led to greater
survival when exposure occurred in the light phase
(active phase) compared to the dark phase (rest phase)
[75]. This difference in survival was in part attributable
to neutrophil activation, as a neutrophil-specific dele-
tion of the circadian clock gene per2 led to impaired
Salmonella killing and ROS production.

In total, studies show that Salmonella clearance is
dependent on the time of infection, with murine and
zebrafish models of infections showing better bacterial
clearance when exposed during the host active phase.
This difference is attributable to circadian regulation
of microbial detection mechanisms, immune signaling,
and neutrophil activity. Evidence shows that the
advantageous times for each of these immune aspects
occur during the host’s active phase, corroborating the
in vivo observation of host susceptibility to Salmonella.
Circadian regulation of NLRP6 is noteworthy, as the
most beneficial time for NLRP6 activation occurs at
the end of the murine rest phase, suggesting that the
time of greatest Salmonella resistance in vivo may trend
toward the earlier portion of the host active phase.
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One major caveat to these estimates is that the protec-
tive effects of the microbiome are highly variable—in
perhaps the most extreme scenario, mice colonized
with SFB showed circadian susceptibility to Salmonella
that was nearly inverted to these estimates. Other as-
yet unidentified members of the host microbiome are
likely to similarly modify circadian susceptibility to
Salmonella via unique modulatory pathways, suggest-
ing that the time of greatest susceptibility may be at
least somewhat specific to each individual.

Additionally, consideration must be given to the fact
that studies on Salmonella infections are typically per-
formed with S. Typhimurium, only one of a multitude
of Salmonella serovars capable of infecting humans. S.
Typhi, for instance, features adaptations for suppres-
sing the immune response, thereby allowing S. Typhi
to replicate unimpeded and develop into a systemic
infection [21]. Given these immune-suppressing adapta-
tions, it is unclear whether susceptibility to S. Typhi
exhibits similar circadian patterns to S. Typhimurium.
Specifically, suppression of many of the immune path-
ways discussed above may result in a phenomenon in
which the circadian expression of many of these
immune pathways is irrelevant in the context of S.
Typhi infections. Further research is therefore required
to determine the circadian nature of infections with
other Salmonella serovars.

Listeria monocytogenes

Listeria monocytogenes (Lm) is a Gram-positive bacte-
rial pathogen that infects humans through contami-
nated food. While it can cause severe gastrointestinal
illness in healthy adults, Lm is typically restricted to
the gut [76], as anatomical and immunological barriers
such as the acidic gastric environment, the presence of
antimicrobial peptides, and colonization resistance pre-
vent bacterial access to deeper tissues [77,78]. However,
newborns, older adults, and immunocompromised indi-
viduals are at risk of developing systemic listeriosis
[76]. In such cases, Lm can initiate invasion by binding
to E-cadherin on intestinal epithelial cells via its viru-
lence factor InlA, which triggers bacterial endocytosis
via a clathrin-mediated mechanism, allowing Lm to
gain access to the host cell cytosol [76]. Here, Lm repli-
cates efficiently, utilizing a suite of virulence factors to
manipulate host cellular processes and ensure bacterial
survival. Lm is also able to spread directly between
cells by using actin-based motility, which enables Lm
to evade detection by most extracellular immune com-
ponents while disseminating to new host cells [79,80].
Eventually, Lm spreads to lymphatic and blood ves-
sels and disseminates to the liver and spleen. In some
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cases, Lm can cross the blood-brain barrier, resulting
in meningoencephalitis or cross the placental barrier
and cause fetal death [76]. Early detection of Lm and
the subsequent production of pro-inflammatory cyto-
kines are necessary to prevent these severe invasive dis-
cases [81]. Cytokines prime innate and adaptive
immune effectors to combat Lm and resolve infection.
Innate immune cells, including macrophages, neutro-
phils, monocytes, and dendritic cells, are crucial for
early control of infection, but are insufficient for clear-
ance in most cases of Lm infection. Because Lm can
largely evade immune detection by remaining within
infected host cells, CD8" cytotoxic T cells, which can
detect and destroy infected host cells, are required for
the ultimate resolution of infection [81]. Out of the
many cytokines that contribute to efficient control of
Lm, TFN-y plays a particularly important role due to
its ability to increase antibacterial efficacy in macro-
phages [82,83] and enhance CD8™ T cell activity [84].

The majority of our understanding of Lm pathogen-
esis and immunity derives from studies performed on
mouse models. Similar to most infections, Lm patho-
genesis depends on the dose [85], mouse strain [86], sex
[87], age [88], and route of infection [85]. For example,
following foodborne transmission, Lm bacteria are not
detectable in the spleen and liver until 48 h after expo-
sure [89], and it is thought that initial interactions with
Lm at mucosal surfaces during this time could pre-
activate cells in the liver and spleen [85]. In contrast,
intravenous (i.v.) infection bypasses gut barriers and
mucosal surfaces. This infection model leads to detect-
able Lm in the spleen and liver within 15 min of infec-
tion [90,91], where Lm encounters naive immune cells,
potentially leading to immune responses and disease
outcomes that differ markedly from those observed in
foodborne infection models.

Establishing infection

As discussed previously, a key step in the pathogenesis
of Lm in the gut relies on the binding of the bacterial
surface protein Internalin A (InlA) to E-cadherin on
host epithelial cells [76,92]. InlA binds efficiently to
human E-cadherin but not the murine homolog, which
limits L. monocytogenes’ ability to establish infection
via oral exposure in wild-type mice [93]. To model oral
infection, models have been developed to allow Lm to
bind to the intestinal epithelial cells, either by geneti-
cally modifying mice to express human E-cadherin [94]
or Lm to express a modified version of InlA engi-
neered to bind to mouse E-cadherin (InlA™) [95]. The
development and utilization of these models have
helped elucidate the kinetics of foodborne Lm
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infection, complementing the existing knowledge of
Lm pathogenesis, which is typically derived from sys-
temic infections or in vitro models.

Bou Ghanem and colleagues demonstrated clear
time-of-day differences in a natural route of infection
by feeding mice bread saturated with Lm InlA™-
contaminated butter [96] (Fig. 4). Mice infected at
mid-day (ZTS5, mid rest phase) were better able to
restrict Lm burden in the gut (primary infection) and
systemic tissues (disseminated infection) as compared
to mice infected at night (ZT14.5, early active phase)
[96]. Despite well-established differences in susceptibil-
ity between BALB/c and C57BL/6 mouse strains [86],
both strains showed increased resistance during the
day (rest phase), suggesting the possibility of a shared
clock-dependent driver of Lm resistance in the gut.
Importantly, this difference was not attributable to
reduced daytime feeding, as C57BL/6 mice infected at
mid-day (ZT5, mid rest phase) exhibited a slightly
higher initial gut burden than those infected at night
(ZT14.5, early active phase), yet subsequently achieved

(A) Nocturnal species early rest mid rest
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greater bacterial clearance. Resistance correlated with
decreased numbers of cell-associated Lm, suggesting
the possibility of rhythmic modulation of bacterial
adhesion to E-cadherin. While there is some evidence
that E-cadherin can oscillate throughout the day [97],
the authors found only a modest role for InlA and
therefore bacterial adhesion in early intestinal infec-
tion. Hence, it is likely that this effect is driven by
other, unidentified features of the gastrointestinal envi-
ronment that are under circadian control. In the com-
plexity of host—pathogen interactions, time-of-day
analyses may offer a powerful filter to identify factors
whose temporal dynamics align with susceptibility win-
dows and allow prioritization of factors most likely to
shape disease outcomes.

Sensing and cytokine production

While the determinants of early gut colonization
remain incompletely defined, in vitro and systemic
infection models have demonstrated a key role for

end of rest early active NN mid active I end of active

Solar Reference (12 hr day) m morning mid afternoon usk evening mid end of night da

ZT, based on "lights on" 0o 1 2 3 4 5 6 7

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Lm InlA(m) oral infection [97] m morning mid afternoon usk evening mid end of night da
bacterial clearance
Lm i.p. infection: 10° CFU [82] m morning mid afternoon usk evening mid end of night da
Ly6C" cell recruitment
"good" cytokines
bacterial clearance
Lm i.p. infection: 107 CFU [82]
"good" cytokines
survival
(B) '
Day Day Night

T bacterial clearance (gut)

T producti.on of protective cytokines (i.p) High dose systemic infection
T recruitment of. Ly6C" monocytes * production of cytokines (i.p)
T TipDCs becomes pathologic?

v better outcome X worse outcome

1 bacterial clearance (gut)

no systemic studies done at night

Fig. 4. Summary of host outcomes following time-of-day studies with Listeria monocytogenes (Lm). (A) Summary of studies reviewed here.
For reference, timelines denoting activity, solar time and ZT (relative to lights on at ZT0) are provided at the top. Each study is denoted by a
pink header with title followed by the citation number used in this review in brackets [#]. Icons are placed based on the ZT at which the
infection occurred (not necessarily the time at which the parameter was measured). Symbols indicate increased (1) or decreased (V) levels
of a parameter measured in the study that is thought to drive differences in bacterial outcome. Ultimate outcomes of pathogenesis are
summarized as better for the host (¢, green fill) or worse for the host (X, red fill). Note that studies vary in the route (oral [97] vs systemic
[82]), dose (10° vs 107 CFU) and lighting parameters (14 h day [97] vs 12 h day [82]) which limits cross-study interpretation. (B) Based on
the limited data available, mice may be more resistant to Lm during the day (rest phase), but protective immune responses may contribute
to immunopathology and mortality at high doses. Created in BioRender. Kimmey, J. (2025).
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innate immune cells in the early response to Lm.
Tissue-resident phagocytes are among the first cell
types to respond to Lm. In vitro studies have demon-
strated that after phagocytosis by naive macrophages,
Lm secretes virulence factors such as listeriolysin O
(LLO) to escape from the phagosome [76]. Once in the
cytosol, Lm replicates and expresses its virulence factor
ActA, which allows the bacteria to hijack host Arp2/3
machinery to induce actin-based motility and propel
itself into neighboring cells [98]. By providing a pro-
tected intracellular niche, these macrophages permit
Lm replication and expansion, exacerbating infection.
However, recognition of Lm components by host pat-
tern recognition receptors (PRRs) such as TLR2 and
CLECSA on these cells triggers the production of pro-
inflammatory cytokines, including IL-6, TNF-a, IL-12
and IFN-y [99-101], which are critical for control
of Lm.

Differences in TLR expression may affect the sensi-
tivity of microbial detection and could thereby drive
significant changes in resistance to Lm, as loss of
MyDS88, which is required for signaling through most
TLR receptors, renders mice highly susceptible to Lm
[102,103]. The expression of several TLRs exhibits cir-
cadian oscillation in the intestinal epithelium of mice
[104], with the peak at dawn (ZTO, end of active
phase) and trough at dusk (ZT12, end of rest phase),
potentially contributing to the increased daytime resis-
tance observed in oral Lm infection. Indeed, splenic
macrophages showed greater production of 1l6, Il1b,
and Tnf transcripts following stimulation with heat-
inactivated Lm at dawn (ZT1, early rest phase) than at
dusk (ZT13, early active phase), agreeing with the idea
that sensitivity to Lm detection can fluctuate over the
course of the day [105]. Hence, the ability to detect
the presence of Lm is an important prerequisite for
bacterial clearance.

Following Lm detection, the production of IFN-v is
also essential for bacterial clearance; the importance of
this response is underscored by the extreme susceptibil-
ity of Ifngr~'~ mice, which lack the receptor for IFN-y
and fail to control infection [84]. IFN-y enhances the
antimicrobial capacity of macrophages by increasing
the production of reactive oxygen and nitrogen inter-
mediates [83] and autophagy-mediated clearance [82],
thereby allowing the macrophage to restrict Lm
growth. Daily oscillations in IFN-y transcript and pro-
tein have been reported [106,107], which may contrib-
ute to differential activation during infection. When
combined with signals produced by the activation of
TLRs, IFN-y also drives polarization of macrophages
into the pro-inflammatory M1 state, which is associ-
ated with control of Lm [100,108]. Many aspects of
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macrophage biology, including metabolism, polariza-
tion, phagocytosis, trafficking, cytokine production,
and activation, either oscillate or become disrupted
when the circadian clock is perturbed and has been
reviewed in detail separately [12].

Myeloid cell recruitment and function

The production of these cytokines and chemokines
ultimately promotes the recruitment of innate immune
cells such as neutrophils and monocytes. Genetic
approaches disrupting the factors necessary for neutro-
phil [109] or monocyte recruitment [110-115] render
mice more susceptible to Lm infection, demonstrating
a critical role in the recruitment of these infiltrating
myeloid cells. Furthermore, antibody-mediated deple-
tion of myeloid cells using anti-Gr-1 mAb leads to
increased susceptibility to Lm [90,116-120]. The anti-
Gr-1 antibody recognizes two distinct cell surface
receptors: Ly6G, which is on neutrophils, and Ly6C,
which is on monocytes, and accordingly, anti-Gr-1
depletes both populations [119]. Subsequent depletion
studies using a neutrophil-specific antibody (anti-
Ly6G) found that while neutrophils are not required
to control low-dose infections [121], they play impor-
tant roles in controlling bacterial burden in the liver
during high-dose infections [122,123]. In contrast, neu-
trophil depletion has minimal impact on bacterial con-
trol in the spleen, even in high-dose infections
[122,123]. This heightened importance for neutrophils
in the liver may reflect differential antimicrobial capac-
ity between Kupffer cells (resident macrophages in the
liver) and marginal zone macrophages (resident macro-
phages in the spleen).

As discussed previously in the Salmonella section,
adhesion molecules for myeloid cell recruitment are
expressed in a circadian manner, although the specific
timing of circadian regulation differs according to tis-
sue [72]. Several studies have reported the circadian
recruitment of myeloid cells to the liver: following
adoptive transfer, Gr-1" cells (neutrophils and inflam-
matory monocytes) showed enhanced homing to the
liver in the evening (ZT13, early active phase) as com-
pared to morning (ZT1, early rest phase), while no dif-
ferences were seen in noninflammatory monocytes [72].
Similar kinetics have been reported for recruitment of
neutrophils to the liver in a model of endotoxic shock
(higher in the evening (ZT13) as compared to midday
(ZT5)) [124]. However, recruitment of Ly6C™ mono-
cytes to the peritoneum after a sterile inflammatory
stimulus (thioglycollate administration) shows slightly
different kinetics, with a peak in late afternoon (ZTS8,
mid-late rest phase) as compared to dawn and dusk
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(ZT0 and ZT12, end of active and rest phase) [89].
Because chemotaxis of each inflammatory cell type
depends on the specific chemoattractants and the adhe-
sion molecules expressed in each tissue, it is not sur-
prising that these studies in disparate tissues yielded
different results.

Recruitment of inflammatory monocytes is critical
to bacterial control of Lm, in part because these cells
differentiate into specialized antimicrobial effectors at
the site of infection. There are two subsets of circulat-
ing monocytes: Ly6Chi monocytes, which are inflam-
matory, and Ly6C'® monocytes, which are typically
involved in the resolution of infection [81]. In response
to IFN-y, Ly6C™ monocytes differentiate into
TNF-0/iNOS-producing dendritic cells (TipDCs),
which play a central role in bacterial clearance
[112,125]. TNF-a promotes further recruitment and
activation of myeloid cells [81] while iNOS (inducible
Nitric Oxide Synthase) catalyzes the production of
reactive nitrogen species, which can directly kill Lm
[112].

Nitric oxide synthases (NOS) have been shown to
exhibit circadian behavior in host cells. Basal NOS
activity oscillates in a 24-h pattern in various mouse
tissues, including lung, blood, and kidneys, peaking
shortly before dawn (ZT21, late active phase) [126]. In
the liver, iNOS expression is oscillatory and depends
on the rhythmic presence of Nocturnin, a deadenylase
that stabilizes iNOS mRNA shortly before dawn
(ZT20, late active phase) [127]. These data suggest that
both monocyte recruitment and the antimicrobial
effector functions of TipDCs, such as iNOS-mediated
killing, may be under circadian control, with the great-
est degree of recruitment and microbial killing occur-
ring in the murine early active and late active phases,
respectively.

These mechanistic links between circadian control of
monocyte recruitment and TipDC effector function are
supported by in vivo evidence demonstrating time-of-
day-dependent susceptibility to Lm infection (Fig. 4).
In a study using intraperitoneal infection of Lm, mice
challenged with 10° colony-forming units of Lm in the
afternoon (ZT8, mid-late rest phase) exhibited
increased bacterial clearance compared to mice infected
at dawn (ZTO0, end of active phase) [89]. This protec-
tion correlated with increased numbers of TipDC in
the peritoneum, spleen, and liver, as well as increased
levels of CCL2, IL-1B, IL-6, and IFN-y following
infection in the afternoon (ZT8, mid-late rest phase)
compared to dawn (ZTO, end of active phase). Based
on our current understanding of host defense against
Lm, this immune profile is expected to enhance
monocyte recruitment, macrophage activation, and
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antibacterial effector function, providing a mechanistic
explanation for the improved survival observed in the
afternoon (ZT8).

When mice were challenged with a higher, lethal
dose of Lm (107 colony forming units), mice infected
in the afternoon (ZT8, mid-late rest phase) still exhib-
ited elevated production of the same ‘protective’ cyto-
kines (CCL2, IL-6, IL-1pB, and IFN-y), consistent with
a circadian influence on the early detection and
immune sensing of Lm [81]. Despite this, mice given
the high-dose infection of Lm in the afternoon (ZT8)
succumbed to infection faster than mice infected at
dawn (ZTO, end of active phase). This suggests that
either cytokine amplitude alone is not sufficient to
account for bacterial clearance or that circadian aug-
mentation of cytokine responses may become patho-
logic under increased infectious burden. A similar
outcome is seen in mice lacking y6 T cells, which
exhibit elevated IFN-y, IL-6, and IL-12 in response to
Lm and succumb despite high cytokine levels, reinfor-
cing the idea that excessive inflammation can drive
mortality when immune regulation is compromised
[128]. Thus, greater cytokine induction is not inher-
ently protective; in contexts of high pathogen burden
or disrupted regulation, times of day associated with
amplified inflammatory responses may instead contrib-
ute to immune-mediated pathology.

CD8" T cell activation and responses

Although innate immunity is necessary for the detection
and early clearance of Lm, the development of a strong
cytotoxic T-cell (CD8" T cell) response is essential to
eliminate most infections. As an intracellular pathogen,
Lm can evade extracellular sensing and persist within
host cells, necessitating CD8" T-cell-mediated surveil-
lance. CD8" T cells identify Lm-infected cells and
induce their elimination via Fas—FasL interactions
[129], TNF-o-dependent apoptosis [130], or granule
exocytosis [130,131]. The spleen is the primary site of
T cell priming during Lm infection [132]. Here, den-
dritic cells (DCs) serve as the principal antigen-
presenting cells, presenting Lm-derived peptides with
appropriate costimulation to naive CD8" T cells to acti-
vate and mature the T cell [81]. Once activated, CD8"
T cells undergo coordinated phases of expansion and
trafficking to infected tissues to eliminate Lm infection.

Due to its intracellular lifestyle and capacity to elicit
strong cytotoxic T-cell responses, Lm has long served
as a model system for studying CD8" T-cell biology.
In the intraperitoneal infection model described above,
mice infected in the afternoon (ZTS8, mid-late rest
phase) exhibited greater numbers of IFN-y-producing
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CDS8" T cells — which correlate with protective immu-
nity — as compared to those infected at dawn (ZTO,
end of active phase) [89]. Several studies have lever-
aged Lm expressing ovalbumin (OVA) to investigate
CD8" T-cell responses. Because bacteria produce many
antigenic epitopes and therefore activate a diverse pop-
ulation of CD8" T cells, heterologous expression of
OVA simplifies tracking of antigen-specific responses.
In one study, mice infected at night (ZT16; early-mid
active phase) with OVA-expressing Lm (Lm-OVA)
generated a greater number of OVA-specific CDS8"
T cells than mice infected in the morning (ZT4, early-
mid rest phase) [133]. This time-of-day effect was
absent in mice lacking glucocorticoid receptors [133],
implying that hormonal circadian signals, at least in
part, contribute to CD8" T-cell responses.

A second study used the Lm-OVA infection model
to investigate whether the T-cell intrinsic circadian
clock is necessary for time-of-day dependent differ-
ences in T-cell function. Here, the authors performed
adoptive transfers of OVA-specific CD8" T cells (OT-I
cells) that were either wild-type or Bmall ™'~ into mice,
and then infected with Lm-OVA [134]. The use of OT-
I cells increases the number of antigen-specific T cells
present at the start of infection, making it easier to
track their responses over time. This study found that
T cells from mice infected in the morning (ZT2, early
rest phase) produced more IL-2 (a cytokine which sup-
ports T cell proliferation), as compared to T cells from
mice infected at night (ZT14, early active phase) [134].
Interestingly, this time-of-day effect did not depend on
the T cell clock, as similar effects were observed in
Bmall '~ T cells, suggesting that extrinsic factors or
cues such as the cytokine milieu or oscillations in
antigen-presenting cells are responsible for this effect.
Notably, there was no difference in the frequency of
IFN-y" or TNF-a" T cells, two effector cytokines that
are important for control of Lm, leaving open the
question of how the observed circadian oscillation of
CDS8™ T cell response would impact Lm infection.

While the times of day that yielded the strongest T-
cell responses differed between the two studies, this
discrepancy may reflect differences in what was mea-
sured. The first study found greater numbers of
antigen-specific CD8" T cells after night infection
[133], while the other observed increased IL-2 produc-
tion following morning infection [134]. The generation
of T-cell responses involves sequential steps, such as
antigen uptake, presentation and migration of antigen-
presenting cells, T cell priming, and clonal expansion
of effector T cells, each of which has its own Kkinetics
of activation [135,136]. Combined with the complex
dynamics of bacterial pathogenesis, therefore, it is
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unlikely that there exists a singular optimal time for T-
cell generation.

The kinetics of antigen presentation can be bypassed
by preloading dendritic cells (DCs) with OVA antigen
in vitro then adoptively transferring these OVA-DCs
into mice. Using this model, CD8" T-cell responses
were greatest when OVA-DCs were transferred in the
middle of the expected day (CT6, expected mid rest
phase) compared to the middle of the expected night
(CT18, expected mid active phase) [137]. [Note: in this
study, mice were maintained in constant darkness, so
times were reported using circadian time (CT) instead
of zeitgeber time (ZT) due to the absence of external
time cues (a.k.a. zeitgebers).] Mice that received OVA-
DCs in the expected day (CT6) generated higher per-
centages of activated, antigen-specific CD8" T cells,
and a greater percentage of this T-cell population pro-
duced IFN-y upon restimulation.

While a small role for the DC-intrinsic clock was
found in the control of DC trafficking to the spleen (a
site. of T cell priming), this time-of-day effect was
found to be largely dependent on the T-cell intrinsic
clock, as the circadian effect in the CD8" T-cell
response was lost when wild-type OVA-DCs were
transferred into mice with Bmall-deficient T cells. In
contrast, the circadian effect was preserved when
Bmall-deficient DCs were transferred into mice with
wild-type CD8" T cells, confirming that the DC-
intrinsic clock plays only a minor role in driving this
phenomenon. Further analysis showed enhanced acti-
vation of TCR signaling pathways during the expected
day (CT6), suggesting that naive T cells are primed for
more efficient activation during the day. Importantly,
the observed differences in the CD8" T-cell response
had functional outcomes—mice vaccinated with OVA-
loaded DCs during the expected day (CT6) showed
significantly greater control of Lm burden in the liver
and spleen as compared to mice vaccinated during the
expected night (CT18).

Vaccination studies can offer insight into circadian
regulation of T-cell responses, but translating these find-
ings to an infection context requires careful consider-
ation. In all infections, the kinetics of antigen
presentation are affected by the location where antigen-
presenting cells encounter the antigen, which in turn
affects how quickly these cells traffic to lymphoid tissues
to prime CD8" cells. The study that used OVA-loaded
DCs detected the adoptively transferred DCs in the
spleen within 4 h of i.v. transfer [137]. This suggests that
the optimal time of CD8" T cell priming may occur
somewhere between CT6 (when the DCs were trans-
ferred) and CT10 (when the DCs were measured in the
spleen), roughly corresponding to ‘early to late
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afternoon’. While no circadian pathogenesis studies
have been conducted using the i.v. model of Lm infec-
tion, the timing is consistent with an i.p. infection model
that reported augmented IFN-y" CD8" T cells and
improved clearance of Lm following infection during
the afternoon (ZT8, mid-late rest phase) vs dawn (ZTO,
end of active phase) [89]. That being said, the study
which infected mice with Lm-OVA bacteria found
greater antigen-specific T cells at night (ZT16, early-mid
active phase) as compared to morning (ZT2, early rest
phase), which may reflect differences in antigen presen-
tation or cytokine milieu during an in vivo infection with
naive immune cells. Finally, as the kinetics of dissemina-
tion from the gut are not well defined, further studies
are needed to predict how these T-cell dynamics would
translate to natural infection.

In total, these studies show circadian regulation over
the severity of Lm infections, but the optimal time for
resolution of the infection greatly depends on the dose
and route of exposure. This variability reflects the dif-
ferences in the kinetics of bacterial invasion and the
degree of immune response following different models
of Lm infection, which together inform disease sever-
ity. For instance, while pro-inflammatory signals can
augment immune cell recruitment and activation to
protect against low infectious doses, these same signals
can also induce harmful levels of inflammation in cases
of high infectious dose. Therefore, the time of greatest
inflammatory response is not necessarily the time of
the most optimal outcome for the host.

The route of infection can similarly influence disease
outcome. Oral infections of Lm showed increased bac-
terial clearance during the middle of the murine rest
phase, seemingly agreeing with the results obtained
during a low-dose systemic infection. However, as Lm
must overcome antimicrobial barriers in the gastroin-
testinal tract in order to establish infection following
oral inoculation, it is unclear whether the time of
greatest resistance reflects changes in gastrointestinal
dynamics or systemic immune responses. Further, cau-
tion must also be taken to interpret these results, as no
studies published thus far have investigated time points
in the middle of the night (murine active phase). More
research is therefore required for comparisons across
infection models and to determine the precise cycle of
infection susceptibility.

The complex pathogenesis of Lm infection also
underlies an important facet of circadian regulation of
immune responses—there is unlikely to be a time at
which every aspect of the immune response is
completely optimal. In the case of CD8" T-cell activa-
tion, many sequential steps are required from the ini-
tial infection to the ultimate killing of infected host
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cells by activated T cells. Each of these steps studied
in isolation has its own kinetics and circadian regula-
tion. As the generation of adaptive immune responses
in vivo typically spans several days, optimal activation
of immunity may therefore necessitate coordination
across different circadian times.

Streptococcus pneumoniae

Streptococcus pneumoniae (Spn, also known as the
pneumococcus) is a Gram-positive bacterium that
can asymptomatically colonize the upper respiratory
tract of humans [138,139]. However, Spn also causes
a wide range of infections including of the sinuses
(sinusitis), middle ear (otitis media), bloodstream
(invasive pneumococcal disease), and remains the
leading cause of community-acquired bacterial pneu-
monia [140,141]. While these infections are generally
uncommon among immunocompetent adults, people
such as newborns, older adults, and the immunocom-
promised exhibit a greater risk of pneumococcal
infection [142]. The establishment of infection
involves a migration out of the upper respiratory
tract, which in turn involves a complex interplay of
the host immune system and bacterial anti-immune
defenses that have not been fully elucidated,
highlighting an as-yet unappreciated layer of com-
plexity to host-pathogen interactions in the context
of Spn infections [143,144].

As of 2025, more than 100 serotypes have been
documented [145], with an average of only 74% of a
strain’s genome being shared with all other Spn strains
[146]. As more than one-quarter of the genome varies
between strains, Spn experiences significant genetic and
therefore phenotypic diversity, contributing to differ-
ences in virulence factors, metabolic capacity, and host
interactions [147-151]. As a result, the pathogenesis of
different Spn strains varies considerably, with many
strains exhibiting specific tissue tropisms, such as the
well-studied D39 (serotype 2) entering the bloodstream
and causing systemic disease, TIGR4 (serotype 4)
accessing the brain and causing meningitis, and A66.1
(serotype 3) remaining in the lung to cause sustained
pneumonia [152]. Additionally, a specific human iso-
late was found to prefer colonizing the ear over sys-
temic infection based on a single nucleotide
polymorphism (SNP) [153].

To study pneumococcal lung infection in a mouse
model, the bacteria are typically administered intrana-
sally (i.n.) or intratracheally (i.t.), with these exposure
routes leading to similar outcomes in mouse models
[154]. In this infection model, many, but not all strains
of Spn can disseminate from the lung to the
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bloodstream, thereby leading to systemic infection
[152]. As the virulence factors necessary for systemic
infections can differ from those of lung infection, sys-
temic infections can also be directly modeled with
intraperitoneal (i.p.) or intravenous (i.v.) infection
models [155]. Disseminated infection occurs in about
5% of community-acquired pneumonia cases [156]
with such infections having approximately 17-20%
mortality, though this is highly dependent on host risk
factors and Spn serotype [157,158]. Thus, while
uncommon, systemic infection models with Spn never-
theless still represent a clinically relevant model of
pneumococcal infection.

The heterogeneity of Spn strains and the varied
immune landscapes of their target tissues present a
challenge to summarize pneumococcal infections as
a singular form of bacterial infection. Additionally,
unlike Salmonella and Lm, Spn is an extracellular
pathogen and generally replicates outside of a host cell
[144,159]. During an infection, therefore, Spn is
exposed to the cumulative antimicrobial efforts of mul-
tiple immune cells, making infection and immune
dynamics more difficult to model for pneumococcal
infections. Hence, although Spn was the first pathogen
shown to elicit circadian variation in host susceptibil-
ity, with studies from the late 1960s and early 1970s
reporting time-of-day-dependent survival in mice
[160-162], the underlying mechanisms of this circadian
susceptibility remain poorly understood. Here, we aim
to discuss the nuances of these pathogeneses in the
context of circadian immunology.

Mucociliary clearance

For Spn to gain access to the lower respiratory tract,
the bacteria must resist mucociliary clearance, a pro-
cess by which microbes are trapped by the mucin
secreted by airway epithelial cells and are moved out
of the lower airways by the coordinated beating of epi-
thelial cilia. Spn produces a polysaccharide capsule
that reduces bacterial attachment to mucin [163-165]
and can cleave mucin through expression of its neur-
aminidases (NanA and NanB) [143]. Additionally,
some evidence exists that the major Spn virulence fac-
tor pneumolysin reduces ciliary beating, suggesting
that resisting mucociliary clearance is essential for Spn
to maintain lower airway infections [166,167]. Mucin
production in murine lungs has been reported to be
under circadian control, as mice were observed to have
greater amounts of mucin in their airways during the
expected night (active phase) than during the expected
day (rest phase) [168]. This oscillation in mucin was
attributed to mucin transport out of airway cells and

D. Mo et al.

was found to be regulated by circadian signals from
the suprachiasmatic nucleus of the brain, as this circa-
dian oscillation was lost upon disruption of the vagal
nerve innervating the airway passages [168].

Likewise, in a lung inflammation model, mice stimu-
lated with ovalbumin to induce inflammation produced
differing amounts of MUCI in a time-of-day manner,
with greater amounts of MUCI produced when stimu-
lated at dusk (ZTI12, end of rest phase) than when
stimulated at dawn (ZTO, end of active phase) [169].
[Note: ZT0 was defined as the time of light off (dusk)
in this study. For consistency, we have converted these
times such that ZTO corresponds to lights on (dawn)
instead.] The authors found that Mucl expression was
suppressed by Bmall in a circadian manner, as silenc-
ing of Bmall induced MUCI protein abundance while
simultaneously ablating the circadian phenotype.
Notably, the authors also found that MucSac tran-
script expression in response to ovalbumin stimulation
was similarly circadian, although Muc5ac transcript
oscillation was different than observed with Mucl.
MucSac transcript was found to be higher between the
night and the following afternoon (ZT20-8, mid-late
active phase to late rest phase). Although the authors
did not investigate whether this oscillatory mRNA
translates into oscillatory MUCSAC protein abun-
dance, this result suggests that different mucins may
exhibit different circadian properties. Nevertheless,
mucin abundance has been shown to be circadian in
both a homeostatic and an inflammatory model, sug-
gesting that Spn resistance may similarly be circadian
both during exposure and during infection, with better
resistance during the host’s active phase.

Macrophage phagocytosis

During infection, Spn encounters tissue-resident mac-
rophages, which phagocytose the bacteria to mitigate
further spread of the bacteria. Studies investigating the
circadian regulation of murine macrophage phagocyto-
sis have generally found greater phagocytic ability dur-
ing the mouse active phase, although the precise
timing of greatest phagocytosis depends on the stimu-
lation model and the consequences of these circadian
oscillations can differ according to the site of infection.
Macrophage populations are highly variable and
tissue-dependent, with tissue-resident macrophages
within one organ having different phagocytic and anti-
microbial capabilities than macrophages within
another organ [170-172]. Hence, phagocytosis of Spn
presents a nuanced and often unintuitive aspect of
Spn pathology. For instance, a study into alveolar
macrophages, the resident macrophages in the lung,
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found that alveolar macrophages are important for
resistance to Spn infection only in low-dose infections
[173], possibly because higher doses overwhelm their
ability to control Spn infection. However, alveolar
macrophages from humans that are nasally colonized
with Spn show increased capacity to phagocytose Spn
and other bacterial pathogens for up to 3 months
postcolonization, suggesting this defense plays an
important role in protection against natural infections
[174]. Additionally, as different strains of Spn localize
to different organs during infections, Spn encounters
different populations of macrophages, contributing to
variations in the host—pathogen interactions between
Spn strains.

Most studies into the circadian nature of macro-
phage phagocytic ability utilize either peritoneal mac-
rophages or bone marrow-derived macrophages
(BMDMs), which do not cleanly reflect the macro-
phage population of any given organ and hence can-
not be used to estimate general antimicrobial efficacy
during Spn infection [175,176]. Nevertheless, peritoneal
macrophages and BMDMs provide valuable insights
into the mechanisms of circadian regulation on macro-
phage phagocytosis. One study observed that perito-
neal macrophages uptake more E. coli bioparticles
when exposed at the end of the day (increased at ZT8,
peaking at ZT12) as compared to the morning or night
(ZTO0, 4, 16 or 20) [177]. Similarly, peritoneal macro-
phages isolated at different times and incubated with
S. aureus bioparticles showed increased phagocytosis
at dusk (ZT12) compared to dawn (ZTO) [178], sug-
gesting  peritoneal ~macrophage phagocytosis s
improved shortly before dusk (late rest phase of the
mouse). In contrast, the circadian phagocytic activity
of BMDMs is less clear, as BMDMs are best suited to
in vitro assays and circadian phases of in vitro assays
do not readily translate to in vivo host circadian times.
A study investigating phagocytosis of zymosan, which
mimics fungal particles, by BMDMs found the greatest
phagocytosis occurring at 8 h after the peak of Per2
mRNA expression [179], whereas another study in
BMDM found that phagocytosis of amyloid particles
(nonmicrobial particles associated with Alzheimer’s)
was greatest at the peak of PER2 protein expression
[180]. These times roughly correspond to dawn (end of
active phase) and dusk (end of rest phase) in the whole
animal, respectively [8,181]. The discrepancies in the
time at which maximal phagocytosis is observed may
reflect differences in macrophage subtype or the parti-
cle being phagocytosed, as both can influence the effi-
ciency and kinetics of internalization [182—184].

Several studies have reported time-of-day resistance
to Spn infection in vivo driven at least in part due to
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differences in circadian-driven oscillations in macro-
phage phagocytosis. In a recent study with an invasive
infection model of Spn strain E1586 (Serotype 1), mice
infected intranasally at midnight and dawn (ZT18 and
ZTO0, mid to end of active phase) showed greater bac-
terial clearance after 24 h in the lung and spleen com-
pared to infection at mid-day and dusk (ZT6 and
ZT12, mid- and end of rest phase) [185] (Fig. 5). This
difference in phagocytic activity was linked to the cir-
cadian clock protein REV-ERBa, which was found to
negatively regulate expression of Apln (apelin), a hor-
mone responsible for maintaining a wide variety of cel-
lular functions in multiple tissues [186]. In alveolar
macrophages and BMDMs, apelin signaling was found
to improve phagocytic ability, with Apln expression
greater at dawn (ZTO0, antiphase of REV-ERB activity)
as compared to dusk (ZT12). In turn, this was corre-
lated with greater clearance of Spn at ZT0, compared
to ZT12. Exogenous supplementation of apelin was
sufficient to improve macrophage uptake of Spn in
vitro and decrease bacterial burden in vivo, confirming
its role in regulating this process. Similarly, pharmaco-
logical inhibition of REV-ERBa improved phagocyto-
sis across all tested cell types in vitro and ex vivo,
decreased bacterial burdens, and improved survival in
vivo following Spn infection at dusk (ZT12).

Relatedly, it is known that mice lacking Bmall in
myeloid-derived cells showed increased control of Spn
following intranasal infection with an invasive strain
of Spn, D39 (Serotype 2) due to increased phagocyto-
sis [178]. While this study did not directly investigate
alveolar macrophages, it demonstrated that peritoneal
macrophages lacking Bmall exhibited higher expres-
sion of genes involved in cytoskeletal remodeling and
actin polymerization, which facilitated cell migration
and phagocytosis, suggesting that Bmall expression
suppresses phagocytic capability [178]. Indeed, loss of
Bmall led to increased phagocytosis of Spn ex vivo by
peritoneal macrophages and increased uptake of S.
aureus bioparticles in peritoneal exudate cells in vivo
[178].

It is important to recognize that not all Spn infec-
tions are equivalent, as serotype-specific traits can
drive markedly different outcomes in infection. In con-
trast to the findings by Angulo et al., which used
strain E1586 (serotype 1) [185] and observed increased
resistance at dawn (ZT0), a study by Gibbs ef al. used
strain D39 (serotype 2) [187] and reported increased
resistance at dusk (ZT12) (Fig. 5). Both studies used
C57Bl/6-derived male mice, an intranasal route of
infection, observed bacterial dissemination from the
lung within the first 24 h of infection, and measured
both pulmonary and disseminated (spleen or blood)
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Fig. 5. Summary of host outcomes following time-of-day studies with Streptococcus pneumoniae (Spn). Summary of studies reviewed
here. For reference, timelines denoting activity, solar time and ZT (relative to lights on at ZTO) are provided at the top. Each study is
denoted by a pink header with title followed by the citation number used in this review in brackets [#]. Icons are placed based on the ZT at
which the infection occurred (not necessarily the time at which the parameter was measured). Symbols indicate increased (1) or decreased
() levels of a parameter measured in the study that is thought to drive differences in bacterial outcome. Ultimate outcomes of
pathogenesis are summarized as better for the host (., green fill) or worse for the host (X, red fill). n.s. in gray means there was no
significant differences in that parameter based on the time of infection. Note that studies vary in the route (oral [97] vs systemic [82]), dose
(10% vs 107 CFU) and lighting parameters (14 h day [97] vs 12 h day [82]) which limits cross-study interpretation. (Right-hand panels) Several
studies identified differences in phagocytosis as driving time-of-day dependent outcomes during infection. However, these studies highlight
the diversity of Spn pathogenesis; where serotype and infection route can drastically alter relative contribution of immune defenses and the
time of best host outcome. Created in BioRender. Kimmey, J. (2025).

burden. However, in addition to the different bacterial A separate study injected mice with Spn strain D39
strains used, Angulo ef al. used a higher dose (1 x 10° intravenously, which bypasses these challenges by
CFU of E1586) and measured bacterial burden at 24 h avoiding the kinetics of crossing the lung barrier [190].
postinfection, while Gibbs et al. used a lower dose In this model, microbes in the bloodstream rapidly
(2 x 10* CFU of D39) and only observed statistically reach the spleen, where they are filtered through the

significant differences at 48 h postinfection. marginal zone of the spleen, a specialized anatomical
Dissemination of Spn from the lung requires utiliza- interface containing marginal zone macrophages
tion of several pneumococcal virulence factors that (MZMs) and marginal zone metallophilic macrophages

allow the bacteria to evade antimicrobial pathways (MMMs) [191]. However, it is known that Spn can
such as the expression of soluble antimicrobial factors replicate intracellularly in these cells, ultimately leading
and phagocytosis by alveolar macrophages [188]; once to host cell lysis, which releases viable bacteria into
in the bloodstream, Spn faces a different milieu of the bloodstream and drives fatal septicemia [192,193].
immune defenses [189]. The observed difference in Spn Thus, phagocytosis of Spn by splenic MMM is detri-
resistance between the two studies may therefore mental for the host [193]. In line with this, Hames
reflect inherent serotype differences and differences in et al. found that mice infected during the day (ZT3,

stage-specific immune dynamics. These factors high- associated with greater resistance) had lower percent-
light the challenges of lung infection models using nat- ages of Spn-infected MZM and MMM (Fig. 5). Infec-
urally invasive Spn strains, where rapid dissemination tion at night (ZTI15, associated with greater
obscures the timing and localization of specific susceptibility) led to a higher percentage of infected
immune responses due to complex, tissue-specific MZM and MMM and increased signs of bacterial rep-
immune interactions. lication [190].
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It is noteworthy that during Spn infection, circadian
control of phagocytosis by alveolar macrophages has
been shown to be protective [185], while circadian con-
trol of phagocytosis by splenic MMM was detrimental
[190]. Interestingly, however, due to differences in the
circadian phagocytosis of alveolar macrophages and
splenic MMM, the most protective time for phagocy-
tosis nevertheless occurs in the day (rest phase in mice)
for both types of macrophages.

Because capsular serotype strongly influences the
susceptibility of Spn to macrophage uptake [194],
the overall impact of phagocytosis on disease outcome
likely depends on the infecting strain. Moreover, in
systemic infection, increased MMM phagocytosis
impairs clearance of Spn [193] but is essential for pro-
tection against Lm [195], providing an example of an
immune response that may be beneficial for one patho-
gen yet harmful for another, highlighting the
pathogen- and tissue-specific nature of immune
responses and their potential interactions with the cir-
cadian clock.

Neutrophil recruitment and function

Clearance of Spn is also dependent on the early detec-
tion of the bacteria and the subsequent recruitment of
nonresident immune cells. As with S. Typhimurium
and Lm, Spn engages various Toll-like receptors and
NOD-like receptors. The binding of these receptors
activates NF-kB and induces production of the pro-
inflammatory cytokines IL-la, IL-1B, IL-6, and
TNF-a. These pro-inflammatory signals lead primarily
to the production of the neutrophil-attracting chemo-
kines CXCLI1, CXCL2, CXCL5, and IL-17. Recruit-
ment of neutrophils is critical for the resolution of Spn
infection, as depletion of neutrophils in mice before
infection with either the anti-Gr-1 antibody [196,197]
or the anti-Ly6G antibody [198,199] increases suscepti-
bility to Spn and leads to higher mortality. In the pre-
vious sections discussing Salmonella and Lm, we have
highlighted the connection between neutrophil recruit-
ment and the circadian clock. In the lung, neutrophil
influx in response to LPS (a molecule found on Gram-
negative bacteria) is circadian, with the greatest
recruitment seen at dawn (ZTO, end of active phase)
[187]. However, the contribution of this phenotype to
time-of-day dependent control of Spn is unclear, as
Spn lacks LPS and infection with strain D39 (serotype
2) did not elicit differential amounts of neutrophils fol-
lowing infection at dawn (ZTO0) or dusk (ZT12) [187].
Neutrophils are also known to contribute to the con-
trol of Spn in the spleen [200], but it is not known if
these effects vary over circadian time.

Circadian timing rewrites infection outcomes

Though the infiltration of neutrophils is known to
be essential for early infection, the role of neutrophils
across all models of Spn infection is nuanced, as sus-
tained neutrophil influx and inflammation can be dam-
aging to host tissue and exacerbate host pathologies
[201-203]. During Spn infection, neutrophils help to
eliminate invading bacteria via phagocytosis [204], neu-
trophil extracellular trap (NET) formation [205,206],
and degranulation [207]. Neutrophil elastase and
cathepsin G are serine proteases and key mediators of
bacterial killing [208], and mice lacking these enzymes
have increased susceptibility to Spn infection [199]. As
discussed previously in the Salmonella section, many
neutrophil antimicrobial processes are under circadian
regulation, with the greatest neutrophil responses gen-
erally occurring at night in mice (active phase in mice)
or morning in humans (active phase in humans). Sur-
prisingly, this pattern of maximal neutrophil activity
coincides with worse clinical outcomes. A total of 5000
pneumonia patients showed that both pneumonia
severity (assessed by pneumonia severity index) and
mortality peaked around 9:00 AM and reached their
lowest point in the evening (6:00-11:00 PM) [74]. This
temporal pattern suggests that heightened neutrophil
inflammatory capacity does not necessarily translate to
improved disease control, but may instead contribute
to immunopathology and worse patient outcomes dur-
ing peak activation periods.

In total, these pieces of evidence suggest that
immune responses to Spn infection are generally most
efficient when activated during the active phase com-
pared to the rest phase. However, care must be taken
to interpret these observations and to predict the circa-
dian nature of Spn infection. As demonstrated by the
investigations into the circadian nature of macrophage
phagocytosis, an immune pathway may be beneficial
or detrimental, depending on the bacterial strain,
exposure route, and tissue being investigated. One
important consideration for comparison across tissues
is that, even within a single organism, different
tissues are known to oscillate on different phases: a
circadian peak in one tissue may be a circadian trough
in another. This presents an additional challenge for
interpretation when utilizing pathogens such as Spn,
which are capable of infecting multiple organs simulta-
neously. Combined with the understanding that
immune responses and their efficacies may differ
across organs, the time-of-day influence on Spn suscep-
tibility can often be circuitous and unintuitive. For
instance, MMM phagocytosis is more efficacious dur-
ing the murine active phase, but is detrimental to Spn
clearance; meanwhile, alveolar macrophage phagocyto-
sis is more efficacious during the murine rest phase
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and is essential for Spn clearance. Therefore, although
much is known about the circadian regulation of
immune pathways, more research is required to inter-
pret their relevance in the context of pneumococcal
infections.

Conclusion

The circadian clock has become recognized as a core
mediator of immune activity that demonstrably
impacts the outcome of bacterial infection, but the
specific mechanisms and optimal timing windows
depend heavily on the pathogen. Here, we showed that
many of the immune pathways that are engaged dur-
ing infections caused by S. Typhimurium, Lm, and
Spn are circadian-controlled and that the development
of the diseases caused by these pathogens therefore
changes depending on the time of infection. From a
broader perspective, a large number of immune path-
ways have now been identified as being regulated by
the circadian clock; thus, it is not surprising that the
susceptibilities to these pathogens were found to be
circadian as well. Indeed, given the role of the circa-
dian clock as a central regulator of multiple immune
processes, it is likely that many other pathogens, if not
most pathogens, share a similar phenotype of circadian
susceptibility.

The specific nature of circadian susceptibility, how-
ever, is more difficult to predict, as it is often unclear
whether an improved immune response truly correlates
with improved disease outcome. In the discussion of
just these select few pathogens, we have examined mul-
tiple examples of these unintuitive interactions. In the
case of Salmonella, the production of antimicrobial
peptides worsens disease outcome by inhibiting
colonization resistance, and activation of the microbe-
detecting inflammasome NLRP6 induces iron seques-
tration, which improves Salmonella growth. In the case
of Lm, increased cytokine production during the day
was correlated with improved bacterial clearance at a
low dose but correlated with faster mortality at
a higher dose, suggesting even protective cytokines can
drive pathologic outcomes. Finally, in the case of Spn,
several studies identify phagocytosis as a driver of
time-of-day dependent differences in disease outcome.
However, the effect depends heavily on the model used
—pulmonary studies point toward a beneficial role of
phagocytosis by alveolar macrophages, but a systemic
study identifies a detrimental role for phagocytosis by
MMM. Because the consequences of a given immune
response are dependent on the invading pathogen,
much of this aspect of pathogenesis is unknown; con-
textualizing specific immune processes to the overall

D. Mo et al.

susceptibility of a pathogen is therefore likely to be a
fruitful area of future research.

Additionally, variation in circadian timing across
human populations is well-documented in circadian lit-
erature. An individual’s chronotype, or preferred sleep
timing, is known to be regulated at least in part by
their genetic makeup [209], suggesting that the same
drivers of chronotype variability may be an additional
regulatory factor in circadian immunity. Research into
human chronotypes has revealed that both age and sex
influence chronotype [210], offering a possible explana-
tion for observed age- and sex-dependent differences in
disease susceptibility. Additionally, aging is known to
reduce the robustness of circadian oscillations in a
variety of biological measures, including blood cortisol
[211] and lipid levels [212], which may contribute to
differences in disease susceptibility across age groups.
For instance, the circadian oscillation of Apin, the
hormone that regulates alveolar macrophage phagocy-
tosis, diminishes with age, leading to an overall greater
susceptibility to Spn infection in aged mice compared
to young mice [185]. Similarly, sex-related differences
in circadian rhythmicity may drive differences in dis-
ease outcome, but more research is required to deter-
mine the precise relationships between sex, the
circadian clock, and infectious disease outcome.
Beyond investigations into circadian immunology,
greater awareness of circadian influences on infection
characteristics may improve reproducibility in noncir-
cadian studies, as circadian differences in immune
responses may prove to be an uncontrolled source of
experimental variability. We therefore recommend
reporting the times of infection in all infection models,
even when circadian influences are not the focus of
investigation.

Finally, recent studies have described circadian
rhythms in bacterial species beyond cyanobacteria
including Bacillus subtilis (found in soil) [213], Klebsi-
ella aerogenes (formerly Enterobacter aerogenes, found
in the gut microbiome) [214,215], and Acinetobacter
baumannii (an opportunistic human pathogen, pre-
print) [216], suggesting bacterial-intrinsic clocks might
exist more broadly and could, at least in principle,
influence infection outcome. At present, however, no
evidence exists to demonstrate that bacterial-intrinsic
rhythms occur in vivo or affect host—pathogen interac-
tions, and there are no reports of circadian oscillations
in  Salmonella, Listeria, or Streptococcus species.
Importantly, however, the absence of existing reports
for these questions may simply reflect a topic that
has not yet been systematically examined, and the
presence or absence of such rhythms remains an open
question.
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The circadian nature of disease susceptibility addi-
tionally presents a unique opportunity for uncovering
deeper insights into the field of immunology. Because
immune activity changes throughout the day, circadian
studies may reveal which processes most strongly influ-
ence disease outcomes and to what extent they shape
pathogenesis. The field of circadian pathogenesis
remains in its infancy, with significant gaps and limited
pathogen coverage constraining our understanding of
temporal host—pathogen dynamics. Current studies
often employ different infection routes, doses, timing
protocols, and outcome measures, making cross-
pathogen comparisons challenging and highlighting the
need for more standardized approaches. Nevertheless,
the consistent observation that infection timing influ-
ences disease outcomes across diverse bacterial systems
suggests that circadian regulation represents a funda-
mental but underexplored dimension of host defense.
An increased understanding of this field may lead to
improvements in therapeutic technologies, as drug
treatments or vaccinations may be timed with a
patient’s circadian clock to optimize for maximal effi-
cacy while minimizing side effects. Future research that
systematically examines circadian—pathogen interac-
tions within the context of specific virulence mecha-
nisms may therefore not only reveal previously
unrecognized principles governing immune function
and bacterial pathogenesis but also have practical
applications for disease treatment and prevention.
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